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Abstract

In recent years the basic‘structure required to implement the
inverse scattering transform in 1+1 and 2+1 dimensions has been
clarified and extended. Aspecfs involved with fully multidimensional
problems have also been treated. [n particular the inverse scattering
associated with various multidimensional operators and generalizations

of the Sine-Gordon and self-dual Yang-Mills equations have been studied.

A review of some of this work will be discussed in this review.
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certain nonlinear evolution equations. There has beert wide ranging
interest in this method for many reasons.) A review of earlier work can
be found in [1]. YA surprisingly large number of physically interesting

nonlinear equations can be solved via IST; there are many applications in

The lnverse Scattering Transform (I.S.T.) is a method to solve

physics including: surface waves, internal waves, lattice dynamics, plasma
physics, nonlinear optics, particle physics and relativity. Mathematically

speaking the field is also quite rich, with nontrivial results in the

areas of analysis, group theory, algebra, differeptial and algebraic
\E;w[/t_wf/
geometry being used by various researchers. From point of view IST

allows us to solve the Cauchy problem for these nonlinear systems. ~+u{]?”

,Av‘m“ r ".’é

3shall concentrateson questions in infinite space. All of the nonlinear

A
equations discussed below arise as the compatibility condition of certain
linear equations, one of which is identified as a scattering (direct and

inverse scattering is required) problem and the other(s) serves to fix

2,

the “time evolution™ of the scattering data. ‘<——
In one spatial dimension the prototype problem is the (KdV)
equation
u, * 6uux Uyt 0. (1)

The KdV equation is compatible with

Vex * u(x,t)v = av

= (Y+ux)v - (Q+2u)v, ’3)

t
implies (1). Equation (2) is the time independent

At 0

i.e. =
e vxxt vtxx

Schrodinger scattering problem, X the eigenvalue (v = const. in (3)). The

o

e

solution of (1) on the line: -=<x<= for initial values u(x,t=0)

vanishing sufficiently rapidiy at infinity is obtained by studying the
Special




associated direct and inverse scattering problem of (2) and using (3)
to fix the time evolution of the scattering data. It turns out that
the inverse problem amounts to solving a matrix Riemann-Hilbert
boundary value problem (RHBVP) whose jump discontinuity depends
explicitly on the scattering data. Calling A:-kz,v(x'k)gu(x'k)e'ikl
| the RHBVP takes the following form,
(u,-u_){x,t,k) = u_(x,t,c(k)) V(x,t,k) on I
usel, |k|e= (4)
where
V(x,t.k) = r(k,t) €27%%, a(k) = -k, Is(k:ke®), and u, are the

limiting boundary values,as Imk+Qs, of meromorphic functions in the
upper (+) lower (-) half plane. (4) may be converted into a linear
integral equation by taking a minus projection and the potential is

reconstructed via
w(xat) = - 3 4 Likx,t,-k) Vx,t,k)dk (S)
) 3‘ c :

where the contour is taken above all poles of r(k.t); of which there

is at most a finmite number, kj 3 irj. xJ'O j = l,e+eK. The

scattering data: the reflection coefficient, r(k,t) evolves simply

in time 2
(ko) = r(k,0) 1% (6)
The above scheme may be extended so as to solve a surprisingly
large number of interesting nonlinear evolution equations. There are
two scattering problems of particular interest in one dimension:
| (i) Scalar scattering problems:

; n )
n n-j
dve 7 uix)d v _
E:“ j=2 ] dx = A,
vix.k), uj C
(11) First order systems - generalized AKNS

i kJverqy

dx

v(x.k)valx) € €N 0 - diag (o1,---0™)

A'RLRTE
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Via an appropriate transformation the inverse problem associated with
(i), (ii) can be expressed as a matrix RHBVP of the form (4). The
potentials u.,q can be shown to satisfy nonlinear evolution equations
by appending to (i) and (ii), suitable linear time evolution equations.
One then finds that the scattering data V(x,t,k) evolves simply in
time. Well known solvabTe nonlinear equations include the Boussinesq,
modified KdV, sine-Gordon, nonlinear Schrodinger, and three wave in-
teraction equations. The reader may wish to consult for example [2a-e]
for a detailed discussion of some of this material.
[t is most significant that these concepts can be generalized to
2 spatial plus one time dimension. Here the prototype equation is
the Kadomtsev-Petviashvili (K-P) equation:
(u, *+ 6uu_ *+u___ ) = -3020 (7)
. t X xxx‘x yy '
which is the compatibility equation between the follduing‘linear prob-
lems:

ovy C v, u(x,y,t)v = 0 (8)
X
Ve * Av g * Buv ¢ 3(ux-o J-u'uydx‘)v +yv =0 (9)
(v = const.). We shall consider the question of salving (7) for

u(x,y,0) decaying sufficiently rapidly in the plane rz = x2 + yZ - o

Physically speaking, both cases 02 = -1 (KPI) 02 = +1 (KPIl) are of
interest. Whereas KP! can be related to a RHBVP of a certain type
(nonlocal; see ref.3]) KPII turns out to require new ideas. Letting

. 2
vz u(x.y.k)e'kx + k" y/o
c2cg ¢ iel. ot 0. Then there exist functions .. bounded for all
x,y satisfying . - 1l as |k | = o  However such a function turns out

to be nowhere analytic in k, rather it depends nontrivially on both
the real and imaginery parts of k(kskR * ikl). u = u(x.y,ka,kl).
In fact y satisfies a generalization of a RHBVP - namely a

3 (DBAR) problem where u satisfies,




3
1
[t
4
2
‘

%‘E = U(xo.Yoeovkx) v(x‘y.ka'kx) (10}
where £ x (= o i L) ang V nas the structure
? R 1 iB(xd-kR.kI.io)
sgn(ko)e
V(x.y-kg.kl) = T(kR'kI)
Zwlonl
“ kg
ﬂ(xo.YkaohoEO) = (X + Z,Y O—R-)(EO - kR) = -2(x + 2y ai)ko
20 g
1 L a
CO = -kR - ——kaR I° ko kR + GR I (11)

(10-11) may be converted into a linear integral equation by employing

the generalized Cauchy formula.T(kR.kl) is viewed as the “nonphysi-
cal” data, (i.e. inverse scattering data or inverse data) and the

potential is reconstructed via

. . 12)
uixy) s 2L ” b(x,ys€qsk VIR Kpokydkpdky (12 ‘,
The basic ideas used in order to derive these equations is E
as follows. We convert the equation for u = u(x,y,k): y
ouy tug t 21'kux - u{x,y)u =0 (13) ;
(]
into an integral equation ) ;
u(x,y,k) = 1 ¢+ G(u,u) (14)
where )
G(f) = G*f = [{G(x-x'.y—y',k) f(x',y')dx'dy', (15)
the Green's function kernel being givenby (k=kp+ik,):
i(gx+yy) "
6(x,y kg ) = —tmy E——F—— dedy ‘
(2n) (ion-£°-2kE)
. san(y) {dgeixe + g(e+2k)y/s ;
2na .
.o (-yogledeaeky))de (16) f

o Ty LI
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A AN s ORIDUMNC R X MM KR M KO N N P ¢ W, .l._ ‘f WA GG AR G A



[
where kO’kR ] -?Ekl and . (x)

y 1x>0, Ox<0; (18]

The § derivative of the Green's function is especially simple,

39 . sgn(k,) is(x,y.kR.kI) (17)
AR AL S L P

when
3/3k = %(%FE + i gFY-l and

k
B(X.y.kR.kI) = -Z(X+2y3i)k0'

Taking the 3 derivative of (14)

au = ffag ox' ' oy - ‘dy!
3E(x'y’kR'kI) JJ;f(x X »yYy ,kR,kI)U(X vy )u(X 'Y 'kR’kI)dx dy

' ' ' (y9u t ' ' [
+ JJG(X-X 2y 'kR’kI)u(x %) );E-(x ' skR’kI)dx dy (18)
and using (17) shows that
du sgn(kO)T kg, k Ko ,Ky) (19)
ST k) Oekeky

where T(kp,k;) = Ije-is(x’y'kR’kI)u(x.y)u(x,y,kR,kI)dxdy and

w(x,y,kR,kI) satisfies:

. f . .
W(X’Y9kR'kI) = e‘e(x’y'kR’kI) v IJG(X'X W=y 'kR’kI)

u(x‘,y')w(x'.y',kR,kI)dx‘dy'. (20)

Multiplying (20) by e’ie(x'y’kR'kI) and employing the following

symmetry condition on the Green's function

e-is(x.y'kR'kI)G(*vy'kk’kl)

s G(X.y.eo.kl)

P
-

E] __l i
where Eo -ko - :Rkl' yields

w(x,y,ka.kl) 3 eis(x.y.kn.kl) “(x'y.EO’kI)




whereupon (10-11) follow. The eigenfunction u is recovered witn rne

generalized Cauchy formula

du

ko Ky )
it (ke .
( XY, kR.k ) =1+ = [J K dkR'dk[ 123)

J

noting that using (10-11), (23) becomes a linear integral equation
for u. The potential u(x,y) is recovered by taking ke in (13) or
(14) and (23).

For the K-P the evolution of the data obeys (Y = 4ik3 in (9)

al , 2 2
5t (81k0)(6kk0 - 4kg - 3K)T (24)
cIkI .
where ko 2 kR + o , k = kR + 'kI'

Special cases include ¢ = oR+icI:
(a) KPII; g = '1: OR = ‘I'OI = 0
aT | 2,2
5t = 8ikp(3KS-kp)T (25)
(b) KPI; g = i: UR'.O', GI = 1, I = kI/OR

2 = -8 (kgrk) (KEe2kgk +4ikD)T (26)
These formulae allow usin principle to solve the Cauchy problem

for K-P and in particular the limit (ii) discussed above ailows

us to give an alternative solution for KP, via 3 and not via a
nonlocal RHBVP.

Similar ideas apply to higher order scalar problems

n n ﬂJ
(1i1) Og—v"a—%’ I u.)( )L:3=
y ax Jj=2 ax

where: v, ”j € ¢ and to first order systems
(iv) < ;; + J-— + qlx,ylv = |

. "
where: v,qr( .J-dlag(J | ). J 4 JJ. '\ # Jwithq = 0.

S AT TR O Lt DTN A I
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Interested readers may consult refernce 4a, and review 4b for
more details.

The notion of & extends to higher dimensional scattering and in-
verse scattering problems. However as we shall mention, despite the
fact that the inverse scattering problem is essentially tractable
there does not appear to be any local nonlnear evolution equatiaons in
dimensions greater than 2 + 1 associated with multidimensional gener-
alizations of (iii) or (iv).

Our prototype scattering problem will be

oV, * av + u(x,y)v = 0

n 32 n
A=t = xe R, yeR. (27)

Letting

. 2
v e u(x.y.k)e'k x ¢ Kylo

n
k kR ; ikt' ket
kex = f ij., o =0p* icl.

Then there exist functions u bounded for all x, y satisfying u-1l, as
lkjl= = 3 = 1.....n. Whenop # 0 wu turns out to be nonanalytic in

each of the variables k, i.e. u = u(x.y.kR voonkg e Kk ) and
1 n n

1

satisfies a 3 problem linear in u, in each of the variables kJ;

i.e. we shall show that y satisfies an equation of the form,

du hd .

~— =T, H = 1,...,

S J(u) j=1 n (28)
J

where fj is an appropriate linear integral operator.

The basic idea in order to derive (28) follows a similar
format to the two dimensional case described earlier. From the
definition of u(x,y,k) below (27) we see that it satisfies

:uy + Au o+ 2ik:Vu - u(x,y) =0. (29)




We convert to an integral equation

us=sls+ G(U u)
where the Green's function kernel is given by

i(x.g+yn)
1 f{ e dedy

(Zﬂ)n#l ioy-EZ-Zk-E

G(X1Y1kRakl) =
.sgn{y) _ 1
o (Zﬂ)n
k

o]
. 0 (-yaR(£2+2 ( kgt ;ﬁ-l-),s)de.

Taking the 3 derivative of (30)
u_ _ 3G (u -
hoik SIS ol

and using

Htrykgeky) = - yrleglfe PR
J

-(€4-kpz)8(o(e))de

J
where )
B(X.y,kR,kIE) = (x+2y Ei)'(g.kR)
g g
I, 2 [, .2
ole) = (g + =k, )° = (kg + —k,)
9R I R or {
shows that
< 1 J )
T T(kgoke€)(€5-kq )3(a(¢))
B () Jegld  RTTTIR
* w<"y'kR'kIve)dE

[ ixeg* g(ﬁz*Zk-E);
e

(30)

(31)

(32)

(33)

(34)

(35)

(36)

N S T DAY AN




where

'iﬁ(XQYOKR’k[J

T(kgokyst) =J.!‘e .U(X,y);'.x.y.kR»k[)dxdy (375

and w satisfies

i8 ’ ’k 9k - (38
w(x.y,kR,kx.g) . e1 (x y R I£)+ G(UW). )

Miltiplying (37) by e 'S and using the symmetry condition

-iBX.,k,k.
e (.VRIE)

G(x,y,kgaky) = G(x,y.€:K¢) (39)
yields ]
WX,y kpokppgi = e"dx'y'kR’kI’E)u(x.y.e. k) (40)
and hence (36) gives
au = 1 2 - —1-— 1 . - .
cslo(e)) &' B0V KRREE) (e ket (a1)

We see that fj is an integral operator which depends on a

scalar scattering function T = T(kR,kI,g)g being effectively
(n-1) integration parameters (due to the delta function in (41)
in the nonlocal operator Tj).

One can use a generalized Cauchy formula such as (23)
in order to obtain a linear integral equation to reconstruct u.
However due to the redundancy of the data discussed below, we find
that an alternative method is more useful. The inverse problem is
redundant, i.e. we are given T(kR.kI.s) (3n-1 parameters) and we
must reconstruct a local potential u(x,y) (n+l parameters). A
serious issue is how to characterize admissible inverse data T,
i.e. data that really arises from a local potential (small generic
changes in T(kR,kI,e) cannot be expected to arise from a local
potential u(x,y)). Insight into this question is obtained by
noting that T must satisfy a nonlinear constraint, one which is
obtained by requiring azu/ai‘.aij = azu/aRJaEi (i #j). the form

UL ARG AT TR A T AR T ST TR E R PP I I P

MWW




of this constraint is given by

x’ij(” 'N,'J'[T] 3l

where J?1J is a linear operator and N ij a nonlinear (quadratic)

nonlocal operator. These operators are given by
= . 2.1 3, N -
K= e, ki) 5 ¢ 7 70 - (g R"a; : a:j’ (43)
N, (T) = j [(ey-kip)leg-6;) - (g, -k,R) i€ )]

(o(e") T (kp,kpa8) T(e" kyp,E)dg". (44)

There is, in fact, an explicit transformation of variables

(kgokpo®) = (xowy,w) ¢ € Lxaxt”
which simplifies (42). Namely,
k = n X - il_ - ——ngOwl
Rl  j= 2 J7Rj 2 sz
w chow,.
KRy T MR T T T o (32)
2w
n TyW AW
R7071
k w.X,. + ’
il j=2 7l 2w
S W.W
R0
k..--wx-* '(J>’2)
ij 1715 sz
s S
1 =2 Yi*rj T T sz
w. WAW.
€5 T TWIXg; +—21-[—%‘L. (132) (45)

Py
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transforms (42) into:

3 - .
== N (T xowgw) - Jo2,=en (45)

3x .

J

using the generalized Cauchy formula (23) we have

N AT (Sowawg) 0
(JIT](Xawnwo) = r(X’wowo) - % JJr LLX -x; 0 dede

&(w,wo) (47)

where

&(wo.w) = Jle'i(’wo*x")u(x.Y)dxdy (48)

We have used the fact that when W * Zklc(e-kR)/cR and w = £-kg
are kept fixed, T(x.w.wo) “5‘"'“0) (The Fourier Transform of u(x,y))
for large xj(wlfO); this is the analogue of the Born approximation.

We expect that for suitably "small" u (i.e. no homogeneous
solutions to the relevant integral quations) if I is independent
of x,J and decays sufficiently fast for lwl,lwol‘., then
T(kR,kI.g) is admissable. Moreover (47) gives a formula to

reconstruct the potential by quadratures. Limits to case

3 = 1 and reductions to stationary potentials u(x,y) = u(x)

can be carried out. Oetails can be found in Ref. [5a,b]. It
should also be noted that in recent work Nachman and Lavine [5c]
have extended theaw ideas to situations where there are
homogeneous solutions to the relevant integral equations.

(42) also suggests why simple local

\ sy . . T . - . ) .
-“'w‘:'J?‘-‘.'1‘,"*‘!’0'.“1"‘\‘.‘A‘?’\'!.t" 1' XA e AN TA NN 'm&t‘mmmm OO0 &

agreaueans s

AL T

2 b TP T

o &

¢ g, e
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——n e T
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nonlinear evolution equations have not been assoclated with eguatron o
(27). Namely in theprevious lower dimensional (2+1 and 1<l groplems
the time evolution of the scattering data obeyed a8 particularly simple
equation, (e.g. %% = J(RR.RI)T). However in this case such a simple flow
will not be maintained - due to the nonlinear constraint (42),

I These ideas can be generalized to first order systems: ?
n 'y
(v) %; . ojfl Jj %;; = qv é
v. qc N 3 diag(J}.....J?) ;
Nra. wrt. X
with many similar results obtained 6a,b,c; though there are some i
important differences as well: see ref. [6¢c]. Again the scattering ;
data satisfies a nonlinear constraint. [n general, there is no ;
compatible local nonlinear evolution equation associated with (v).

J However when certain restrictions are put on'Jj then the constraint
equation becomes linear and the so-called N wave interaction equations i
are compatible with the system (v). Nachman and Ablowitz [6a] :
showed that at most, the system would be 3+1 dimensional, and Fokas{6b] ﬁ
: showed that indeed the system is reducible to 2+1 dimensions by a %
transformation of independent variables (characteristic variables). }
; In {6c] Fokas studies the inverse scattering of (v).For ¢ = i he "
{ finds an equation similar to (42). However its integrated ﬁ
form shows that in order for the potential to be reconstructed %
one must solve a reduced system of equations of the form (v): 2
i.e. for N = 2, This is in contrast to the scalar problem where 3
reconstruction is via quadratures. :3
b Beals and Coifman haven an alternative but similar formula- f}
tion [7a,b] for multidimensional scalar problems. '
There is an n-dimensional problem which also fits within S
the framework of [ST: The so-called generalized wave and generalized o
sine-Gordon equation (GWE and GSGE). These equations arise in the ;g
context of differential geometry and serve to extend the classical re- >
sults of Backlund for the sine-Gordon equation to n-dimensions [8]. gE
The n-dimensional Backlund transformation is given by: $
0‘.
a

RO A

by ARA S ] Y A o\ y '
e e ‘."‘,’"n‘l’.'l‘q'!'n'b'..l.."'\‘l‘.".q‘l,oil.g'l_...'A.\ Iy ‘,l"‘g'l % W MY ,.‘Q..'lo.i Y &% l’& AN ALY A0 l.‘.l" Ol N l’ .l!"
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ax + xA%x = A - xs, 491

where

od, . .
—.lex -.1_—1‘-dx. 1<i'j:n. (50)

8.. . . 1<
i) li 3xi J ‘lj 3xj i

and a = (8,5} ¢ R™". " Equations (49-50) reduce to the Bicklund trans-
formation for the generalized sine-Gordon equation (GSGE) when

Bi(2) = (2% + (28, - 1))/22, (51)
and for the generalized wave equation (GWE) when

8;(2) = -(1-2%)/2z2 = Mz). (52)

The compatibility condition required for the existence of solu-
tions to these Backlund transformations results in a system of second-

order partial differential equations for an orthogonal n x n matrix
a = (‘ij] in (49) which is a function of n independent variables
a-= a(xl.xz.....xn). The equation has the form

I 0 Wet ) IO Y U Wi U}
o ali Axi nxj alk ij

My
Ldl‘dlj. 1 £ ),

aa dd aa

I (0 SR L 1) R ; axl‘ axlk' ' 3.k distinct,

X\ %1 Ay F 9
ifj_k :I-ﬂ;ﬂz_al_k- . y ¢ b, (53)
X 31§ Xy

where ¢ = | for the GSGE and : = 0 for the GWwf.




e 4w s Ky 30y Fry a0 1,04, 4% Tovat tat tat -yl a.g 9 » PR . 9 a7 ats st il %8 104 a0 Hal " oyt v " « y B
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L N -

! We abserve that when n = 2 and . : ] (GSGE). the orthogong!
matrix a = !aij} given by
: . in 4
cos 5 u sin 5 u :
: s - IR
) =sin % v cos % u ‘
¥
. for the function u = u(x,t) reduces the GSGE to the classical sine-
R Gordon equation (x = -1), ;
' ¢
{
Uy = Uy, -¥Sin u = 0. (55) !
%

On the other hand when n = 2 and x = 0, then with 64 ) the GWE reduces
1 to the wave equation (55). When n > 3 the generalization of the
‘ ' wave equations discussed here is nonlinear.

-

The B8Ecklund transformations (49) described above are in fact {
;i matrix Riccati equations. Linearizations of such a system can be i
& performed in a striaghtforward manner. Introducing the trans- f
; formation 3
. | x =l (56) 3
. . )
i where U, V and n x n matrix functions of XyoeooXps the following linear :
4
! 3
¥ system is deduced: ]
‘:2 du ] 0 A U (57) f
f av At 8 v 4
: %
¥ )

with the components of A, B given Dy (50). Compatibility ensures that

- 1

the orthogonal matrix a =
" with {52). Alternatively, if we call ]

: U) =y, (<8) '
¥ '] o]
‘!

the following linear system of 2n 0.d.e.’s are obtained:

2 {aij} satisfies the GSGE with (51) and GWE

BY Ry Cjor (59)

ax, Jj '

J 0

py b 4
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where Aj' cJ are 2n x 2n matrices with the block structure

0 4 N 9

Q
—.

Here &;, 7 are n x n matrices having the following structure:

- 8
4 (; - l)elaj +a

J',
i (61)
aj z aeJ
where ej = {eJ.}ik is the unit matrix
1 i=ks=j, (62)
{e.} . =
373k 1y otherwise,
and in component form Yj takes the form
3a aa
. _5.1 A _lig
(V')ks. (lékj) k ,_J - (1- 61 i 3":. (63)

- In (61) a is the orthogonal matrtx R" - SO(n) assoc1ated with the GWE
“when & =) and with the GSGE when & = f(z +1/2), A= z(z - 1/2), and
vy is the matrix (63): R, =M (R), Yyt 0. Equations (53) arise
as the compatibility condition associated with (58). More explicitly,
for the GWE the scattering problem takes the form (v = w(x,A)]

I A Ajw + ij (64)
J
with
0 a.
TRl AT (65)
X 0
|
and C, given by (60,63).
fEr the GSGE the scattering problem for o = :(»,0) takes the
form
S g [0 €14;
cxj t y
°jel 0
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“2), A2), (, grven above. or equivalently

K% 2 ¢
sdilt NG N NURR e (g7
J
where
- /0 ua .
B, * ), u o= diag(el, -1, ..., -1). (68)
a}u 0

In [8] it is shown how these )inear prodblems may De viewed as a direct
and inverse scattering problem for the GWE and GSGE. Namely the

- direct and inverse problem may be solved for matrix potentials, de-

- pending on the orthogonal matrix a, tending to the identity sufficient-
ly fast in certain “generic” directions. It should be noted that

- salving the n-dimensional GWE and GSGE reduces to the study of the
scattering and inverse scattering associated with a coupled system of
n one-dimensional o.d.e.'s. This is in marked contrast to other
attempts described earlier to isolate solvable (local) multidimensional
nonlinear evolution equation which are compatibility conditions of two
Lax-type operators, e.g.,

Lou= Ay (69)
Y = MU (70)
where L is a partial differential operator with the variable t enter-

ing only parametrically. Although as we have seen nonlinear evolution
equations 1in three independent variables can be associated with such

Lax pairs (e.g. the K-P, Davey-Stewartson, three wave interaction
equations, etc.) little progress via this rcute has been made ir

more than three dimensions. As discussed earlier one has to overcome a
serious constraint inherent in the scattering/inverse scattering

theory for higher dimensional partial differential operators in

order to be able to isolate associated solvable nonlinear equations,
i.e. the scattering data generally satisfies a nonlinear equation

(eq. (42)). The analysis associated with the GWE and GSGE avoids

these difficulties since the GWE and GSGE problems are simply a
compatible set of nonlinear one-dimensional o.d.e.'s.

[
N,
mﬂmm%:&:&mmmwm;g
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The results in ref. [8) demonstrate that the initial value proplem ij’;
is posed with given data along lines and not on (n-1) dimensignal X
manifolds. i
Similar ideas apply to certain n-dimensional extensions i;lj'-

of the so-called anti-self-dual Yang-Mills equations (SDYM) ',‘-.
[9]. In two complex variables the self-dual Yang Mills equations :‘
take the form (see [10]) e
g‘l";

._f_ (&‘2'1 i, , _a. (9'1 3_(_2_) =0, (71) '.’:,:

3xy ax, axz Xy !;:‘

¥ |

where Q is a positive matrix valued function of (xl.xz)ctz. ;:i.Z
o

Alternatively SDYM takes the form s
.'fn‘

aAl aAz B

St E 0 (72) ‘f

T o

M 2R i

— . — s 73 i)

axy 3%, * [AI'AZ] 0, (713) B

o

where ‘.l‘:f
-1 239 W

AJ 2 - I (74) ':::

J oAl

AN ¥

ks

The SOYM may be obtained via the compatibility condition oy
of the following linear system ':'::"
l':‘\l

m o am R

ax, . M -

1 X2 (75) ;,f_

am am o

+ z N

Trxz z 9%, Agm ;:

multidimensional extensions may be obtained. For example, g
consider the linear system o
t:"!

b 0%

D‘zm(x.z) = AJ-(X)m(x.z),j = ],-n
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Compatibility (commutativity) implies:

“ iy _nd . 70"

DA - DA, + [A;.A;] = 0 (78,
A.1=0 (79)
s 0. (80)

e A potential 2 may be introduced as before: (81)

to obtain

3 3 -1 38 3 -1 30
N g— ——) - - c— —) =
ey S5 o1 ( %) ° 5y i (a 3xj) 0. (82)

%s Clearly when n=2 this system reduces to the classical
é: SOYM equation.

\ Solutions to these equations may be constructed via
the 3 method. Define

K j. J J
D, = Ly *+ 2 (83)

¥ with

o"“ Lj’a.Lj'S-—.a—'
N 1 axj 2 J 3xj*1

{ We shall show that the 3 integral equation

. m(x,z) = 1 + 7%? IJ ”g-z‘ L dg-dé (84)

D R A A R R N R A Dt I TR NN
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satisfies (76). Operating on (84) with Dg yields,

dg-dg + J (85)

‘ j j
3 . 1 J (le)v + m(le)

g-2

where

1 zL%(mV) . s
j -z et i

1 J .
ol J[ LZ(mV)dc daZ _.

ch(mV)

+ ZtLi_ I -2 dg-dz. (86)

Putting (85), (86) together gives ™
. J (0dm)v + m(0v)

l‘|

In =
Dzm Aj * 5T
Whe re 1 . 1 3 ( ..i
A 2 o J - 2T e - . | -dz N 88 \
| AJ(x) 7T J Lz(mv)dc dg 5T S 3% }(mv)dc dg (88) W

j+l ,'::

Wwe shall require V(x,z) to satisfy
oJv =0 (89)

in which case using (84) in (87) by writing

A, s A.(m -

i i [ ?dec-da) (90)  ~3

OO OO 0RO Y T PO, TN OO0 G i 1 1O



we find

o ( oJm)
1
(ng ) Ajm) *In I

For Vv suitably chosen {84) has a unique solution in which case

ogm - Ajm = 0. (92)

Thus ij s Aj and solutions of the extended SOYM are obtained.

The condition (89) is satisfied if we take V(x,z) = V(u(x),2),
with uj(x) TIX Y SR, and V holomorphic in the uye Then
Jy a
D v (53— + zs j 1) V(u, ....un,z)

. ) =0 (93)

slglv ("z’z)(26j£ sjsj+1i6Jz

by virtue of s, = (-)j. In ref. [9] other examples of
multidimensional extensions of SDYM and a rigorous derivation
of the foregoing is given.
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